Cloud vs Edge Computing for Mobile Services: Delay-aware Decision Making to Minimize Energy Consumption
نویسندگان
چکیده
A promising technique to provide mobile applications with high computation resources is to offload the processing task to the cloud. Mobile cloud computing enables mobile devices with limited batteries to run resource hungry applications with the help of abundant processing capabilities of the clouds and to save power. However, it is not always true that cloud computing consumes less energy compared to mobile edge computing. It may take more energy for the mobile device to transmit a file to the cloud than running the task itself at the edge. This paper investigates the power minimization problem for the mobile devices by data offloading in multi-cell multi-user OFDMA mobile cloud computing networks. We consider the maximum acceptable delay and tolerable interference as QoS metrics to be satisfied in our network. We formulate the problem as a mixed integer nonlinear problem which is converted into a convex form using D.C. approximation. To solve the optimization problem, we have proposed centralized and distributed algorithms for joint power allocation and channel assignment together with decision making. Our simulation results illustrate that by utilizing the proposed algorithms, considerable power saving could be achieved e.g. about 60% for short delays and large bitstream sizes in comparison with the baselines.
منابع مشابه
Reduction of Energy Consumption in Mobile Cloud Computing by Classification of Demands and Executing in Different Data Centers
In recent years, mobile networks have faced with the increase of traffic demand. By emerging mobile applications and cloud computing, Mobile Cloud Computing (MCC) has been introduced. In this research, we focus on the 4th and 5th generation of mobile networks. Data Centers (DCs) are connected to each other by high-speed links in order to minimize delay and energy consumption. By considering a ...
متن کاملEnergy Aware Resource Management of Cloud Data Centers
Cloud Computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and purchased. Virtualization technology forms a key concept for new cloud computing architectures. The data centers are used to provide cloud services burdening a significant...
متن کاملJoint Allocation of Computational and Communication Resources to Improve Energy Efficiency in Cellular Networks
Mobile cloud computing (MCC) is a new technology that has been developed to overcome the restrictions of smart mobile devices (e.g. battery, processing power, storage capacity, etc.) to send a part of the program (with complex computing) to the cloud server (CS). In this paper, we study a multi-cell with multi-input and multi-output (MIMO) system in which the cell-interior users request service...
متن کاملGreen Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملCommunication-Aware Traffic Stream Optimization for Virtual Machine Placement in Cloud Datacenters with VL2 Topology
By pervasiveness of cloud computing, a colossal amount of applications from gigantic organizations increasingly tend to rely on cloud services. These demands caused a great number of applications in form of couple of virtual machines (VMs) requests to be executed on data centers’ servers. Some of applications are as big as not possible to be processed upon a single VM. Also, there exists severa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.03771 شماره
صفحات -
تاریخ انتشار 2017